科学世界正在快速改变,新技术正在开发,新的趋势正在进行频率增加。本文介绍了对学术出版物进行科学分析的框架,这对监测研究趋势并确定潜在的创新至关重要。该框架采用并结合了各种自然语言处理技术,例如Word Embedding和主题建模。嵌入单词嵌入用于捕获特定于域的单词的语义含义。我们提出了两种新颖的科学出版物嵌入,即PUB-G和PUB-W,其能够在各种研究领域学习一般的语义含义以及特定于域的单词。此后,主题建模用于识别这些更大的研究领域内的研究主题集群。我们策划了一个出版物数据集,由两条会议组成,并从1995年到2020年的两项期刊从两个研究领域组成。实验结果表明,与其他基线嵌入式的基于主题连贯性,我们的PUB-G和PUB-W嵌入式与其他基线嵌入式相比优越。
translated by 谷歌翻译
我们审查了利用自然语言处理(NLP)方法来支持设计过程的学术贡献。采用启发式方法,我们收集了223篇文章,在32项期刊上发表,并在1991年至今。我们通过根据自然语言文本来源的类型审查这些文章,提出最先进的NLP内部设计研究:内部报告,设计概念,话语成绩单,技术出版物,消费者意见等。总结和识别这些贡献中的差距,我们利用现有的设计创新框架来识别NLP目前支持的应用程序。然后,我们为未来的NLP内部设计研究提出了一些方法论和理论方向。
translated by 谷歌翻译
Compliance in actuation has been exploited to generate highly dynamic maneuvers such as throwing that take advantage of the potential energy stored in joint springs. However, the energy storage and release could not be well-timed yet. On the contrary, for multi-link systems, the natural system dynamics might even work against the actual goal. With the introduction of variable stiffness actuators, this problem has been partially addressed. With a suitable optimal control strategy, the approximate decoupling of the motor from the link can be achieved to maximize the energy transfer into the distal link prior to launch. However, such continuous stiffness variation is complex and typically leads to oscillatory swing-up motions instead of clear launch sequences. To circumvent this issue, we investigate decoupling for speed maximization with a dedicated novel actuator concept denoted Bi-Stiffness Actuation. With this, it is possible to fully decouple the link from the joint mechanism by a switch-and-hold clutch and simultaneously keep the elastic energy stored. We show that with this novel paradigm, it is not only possible to reach the same optimal performance as with power-equivalent variable stiffness actuation, but even directly control the energy transfer timing. This is a major step forward compared to previous optimal control approaches, which rely on optimizing the full time-series control input.
translated by 谷歌翻译
Diabetic Retinopathy (DR) is a leading cause of vision loss in the world, and early DR detection is necessary to prevent vision loss and support an appropriate treatment. In this work, we leverage interactive machine learning and introduce a joint learning framework, termed DRG-Net, to effectively learn both disease grading and multi-lesion segmentation. Our DRG-Net consists of two modules: (i) DRG-AI-System to classify DR Grading, localize lesion areas, and provide visual explanations; (ii) DRG-Expert-Interaction to receive feedback from user-expert and improve the DRG-AI-System. To deal with sparse data, we utilize transfer learning mechanisms to extract invariant feature representations by using Wasserstein distance and adversarial learning-based entropy minimization. Besides, we propose a novel attention strategy at both low- and high-level features to automatically select the most significant lesion information and provide explainable properties. In terms of human interaction, we further develop DRG-Net as a tool that enables expert users to correct the system's predictions, which may then be used to update the system as a whole. Moreover, thanks to the attention mechanism and loss functions constraint between lesion features and classification features, our approach can be robust given a certain level of noise in the feedback of users. We have benchmarked DRG-Net on the two largest DR datasets, i.e., IDRID and FGADR, and compared it to various state-of-the-art deep learning networks. In addition to outperforming other SOTA approaches, DRG-Net is effectively updated using user feedback, even in a weakly-supervised manner.
translated by 谷歌翻译
Three main points: 1. Data Science (DS) will be increasingly important to heliophysics; 2. Methods of heliophysics science discovery will continually evolve, requiring the use of learning technologies [e.g., machine learning (ML)] that are applied rigorously and that are capable of supporting discovery; and 3. To grow with the pace of data, technology, and workforce changes, heliophysics requires a new approach to the representation of knowledge.
translated by 谷歌翻译
In the Earth's magnetosphere, there are fewer than a dozen dedicated probes beyond low-Earth orbit making in-situ observations at any given time. As a result, we poorly understand its global structure and evolution, the mechanisms of its main activity processes, magnetic storms, and substorms. New Artificial Intelligence (AI) methods, including machine learning, data mining, and data assimilation, as well as new AI-enabled missions will need to be developed to meet this Sparse Data challenge.
translated by 谷歌翻译
Quantum machine learning (QML) has received increasing attention due to its potential to outperform classical machine learning methods in various problems. A subclass of QML methods is quantum generative adversarial networks (QGANs) which have been studied as a quantum counterpart of classical GANs widely used in image manipulation and generation tasks. The existing work on QGANs is still limited to small-scale proof-of-concept examples based on images with significant down-scaling. Here we integrate classical and quantum techniques to propose a new hybrid quantum-classical GAN framework. We demonstrate its superior learning capabilities by generating $28 \times 28$ pixels grey-scale images without dimensionality reduction or classical pre/post-processing on multiple classes of the standard MNIST and Fashion MNIST datasets, which achieves comparable results to classical frameworks with 3 orders of magnitude less trainable generator parameters. To gain further insight into the working of our hybrid approach, we systematically explore the impact of its parameter space by varying the number of qubits, the size of image patches, the number of layers in the generator, the shape of the patches and the choice of prior distribution. Our results show that increasing the quantum generator size generally improves the learning capability of the network. The developed framework provides a foundation for future design of QGANs with optimal parameter set tailored for complex image generation tasks.
translated by 谷歌翻译
Neural machine translation (NMT) has become the de-facto standard in real-world machine translation applications. However, NMT models can unpredictably produce severely pathological translations, known as hallucinations, that seriously undermine user trust. It becomes thus crucial to implement effective preventive strategies to guarantee their proper functioning. In this paper, we address the problem of hallucination detection in NMT by following a simple intuition: as hallucinations are detached from the source content, they exhibit encoder-decoder attention patterns that are statistically different from those of good quality translations. We frame this problem with an optimal transport formulation and propose a fully unsupervised, plug-in detector that can be used with any attention-based NMT model. Experimental results show that our detector not only outperforms all previous model-based detectors, but is also competitive with detectors that employ large models trained on millions of samples.
translated by 谷歌翻译
Machine learning (ML) has found broad applicability in quantum information science in topics as diverse as experimental design, state classification, and even studies on quantum foundations. Here, we experimentally realize an approach for defining custom prior distributions that are automatically tuned using ML for use with Bayesian quantum state estimation methods. Previously, researchers have looked to Bayesian quantum state tomography due to its unique advantages like natural uncertainty quantification, the return of reliable estimates under any measurement condition, and minimal mean-squared error. However, practical challenges related to long computation times and conceptual issues concerning how to incorporate prior knowledge most suitably can overshadow these benefits. Using both simulated and experimental measurement results, we demonstrate that ML-defined prior distributions reduce net convergence times and provide a natural way to incorporate both implicit and explicit information directly into the prior distribution. These results constitute a promising path toward practical implementations of Bayesian quantum state tomography.
translated by 谷歌翻译
With the progress of sensor technology in wearables, the collection and analysis of PPG signals are gaining more interest. Using Machine Learning, the cardiac rhythm corresponding to PPG signals can be used to predict different tasks such as activity recognition, sleep stage detection, or more general health status. However, supervised learning is often limited by the amount of available labeled data, which is typically expensive to obtain. To address this problem, we propose a Self-Supervised Learning (SSL) method with a pretext task of signal reconstruction to learn an informative generalized PPG representation. The performance of the proposed SSL framework is compared with two fully supervised baselines. The results show that in a very limited label data setting (10 samples per class or less), using SSL is beneficial, and a simple classifier trained on SSL-learned representations outperforms fully supervised deep neural networks. However, the results reveal that the SSL-learned representations are too focused on encoding the subjects. Unfortunately, there is high inter-subject variability in the SSL-learned representations, which makes working with this data more challenging when labeled data is scarce. The high inter-subject variability suggests that there is still room for improvements in learning representations. In general, the results suggest that SSL may pave the way for the broader use of machine learning models on PPG data in label-scarce regimes.
translated by 谷歌翻译